Capacitance touch panel module and fabrication method thereof

 

A method of fabricating a capacitance touch panel module includes forming a plurality of first conductive patterns on a substrate comprising a touching area and a peripheral area along a first orientation, a plurality of second conductive patterns along a second orientation, and a plurality of connecting portions in the touching area; forming a plurality of insulated protrusions, in which each insulated protrusion covering one connecting portion, and forming an insulated frame on the peripheral area; and forming a bridging member on each insulated protrusion.

 

 

CROSS REFERENCE TO RELATED PATENT APPLICATION
This application is a continuation application of and claims priority benefit of U.S. application Ser. No. 14/246,788, filed on Apr. 7, 2014, which claims the priority benefit of U.S. application Ser. No. 12/718,068, filed on Mar. 5, 2010, patented on May 20, 2014, with U.S. Pat. No. 8,729,910, which claims the benefit of Chinese application Serial No. 200910307440.0, filed on Sep. 22, 2009. The entirety of the above-mentioned patent application is incorporated herein by reference and made a part of this specification.
BACKGROUND
1. Technical Field
The present disclosure generally relates to capacitance touch panel modules, and particularly, to a capacitance touch panel module and a fabrication method thereof.
2. Description of Related Art
Capacitance touch panels are often used in portable electronic devices due to their dustproof, multi-touch capabilities, and thermostable properties.
A commonly used capacitance touch panel module includes a touch panel and a cover lens bonded thereto by using optical adhesive. The touch panel includes a base plate, two transparent conductive layers, and two insulating layers. The conventional touch panel module having five layers, in combination with a possibly-added cover lens, results in an overly thick unit having lesser than optimum light transmittance, and reduced quality. In addition, the optical adhesive is expensive and cannot be recycled.
Therefore, there is room for improvement within the art.
BRIEF DESCRIPTION OF THE DRAWINGS
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout several views, and all the views are schematic.
FIGS. 1 through 5 show a first embodiment of a method of fabricating a capacitance touch panel module.
FIGS. 6 through 9 show a second embodiment of a method of fabricating a capacitance touch panel module.
DETAILED DESCRIPTION
Referring to FIGS. 1 and 2, a first embodiment of a method of fabricating a capacitance touch panel module is described as follows. A substrate 301 with a touching area 302 and a peripheral area 304 arranged around the touching area 302 is provided. The substrate 301 may be made of glass, quartz, plastic, resin, acrylic fabric, or other transparent material.
A transparent conductive layer (not shown) is formed on the substrate 301 of indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), magnesium indium oxide (MIO), or other transparent conductive materials. The transparent conductive layer is etched to form a plurality of first conductive patterns 303, a plurality of second conductive patterns 307, and a plurality of connecting portions 305 in the touching area 302. The first conductive patterns 303 are arranged in a plurality of rows along a first orientation 309. The second conductive patterns 307 are arranged between the neighboring rows of the first conductive patterns 303. Each connecting portion 305 connects two neighboring first conductive patterns 303 which are arranged in a row. The first conductive patterns 303 are electrically insulated from the second conductive patterns 307.
Referring to FIG. 3, a photoresist layer (not shown) or similar types of photosensitive insulating layer is formed on the substrate 301 and undergoes lithography to form a plurality of insulated protrusions 313 in the touching area 302 and forms an insulated frame 306 covering the peripheral area 304. Each insulated protrusion 313 covers one connecting portion 305 and at least part of the first conductive pattern 303 connecting with the connecting portion 305. The insulated protrusions 313 and the insulated frame 306 may be made of light absorption material to obtain a shading effect.
The insulated protrusions 313 and the insulated frame 306 may also be photo etched. In detail, an insulated layer may be formed on the substrate 301, followed by a photoresist layer formed on the insulated layer, and the photoresist layer may be formed by lithography, after which the insulated layer may be etched through the developed photoresist layer to form the insulated protrusions 313 and the insulated frame 306. Alternatively, the insulated protrusions 313 and the insulated frame 306 may be formed by ink jet printing.
The method may also include baking for about one hour at 200° C. to 300° C., preferably at 220° C. The surface of each insulated protrusion 313 becomes curved after baking due to cohesion of the insulated protrusions 313.
Referring to FIG. 4, a metallic layer (not shown) is deposited on the substrate 301, with a plurality of bridging members 327 formed in the touching area 302 and a plurality of conductive wires 308 formed in the insulated frame 306. Each bridging member 327 covers one insulated protrusion 313 and electrically connects two neighboring second conductive patterns 307 along a second orientation 311. Parts of the conductive wires 308 connect with parts of the first conductive patterns 303, respectively. The other parts of the conductive wires 308 connect with parts of the second conductive patterns 307.
Referring to FIG. 5, a protective layer 310 is formed on the substrate 301 covering the entire touching area 302 and the entire peripheral area 304 to protect the contact structure (not labeled) and the conductive wires 308. The contact structure includes the first conductive patterns 303, the second conductive patterns 307, the bridging members 327, the insulated protrusions 313, and the connecting portions 305. The protective layer 310 may be silicon oxide, silicon nitride, or other materials.
Referring to FIGS. 1 through 5, the first embodiment of the method of fabricating a capacitance touch panel module is described in the following: in step S101, a substrate 301 comprising a touching area 302 and a peripheral area 304 around the touching area 302 is provided; in step S103, a plurality of first conductive patterns 303, a plurality of second conductive patterns 307, and a plurality of connecting portions 305 is formed, in which the first conductive patterns 303 are arranged in a plurality of rows along a first orientation 309, the second conductive patterns 307 are arranged between neighboring rows of the first conductive patterns 303, wherein each connecting portion 305 connects two neighboring first conductive patterns 303 arranged in a row, and the first conductive patterns 303 are electrically insulated from the second conductive patterns 307; in step S105, a plurality of insulated protrusions 313 in the touching area 302 and an insulated frame 306 in the peripheral area 304 are formed, wherein each insulated protrusion 313 covers one connecting portion 305; in step S107, a bridging member 327 is formed on each insulated protrusion 313, and the bridging member 327 electrically connects two neighboring second conductive patterns 307.
Referring to FIGS. 6 and 7, a second embodiment of a method of fabricating a capacitance touch panel module is described as follows. A substrate 401 with a touching area 402 and a peripheral area 404 arranged around the touching area 402 is provided. A plurality of bridging members 427 is formed in the touching area 402.
Referring to FIG. 8, a plurality of insulated protrusions 413 is formed in the touching area 402. Each insulated protrusion 413 covers at least part of one bridging member 427. An insulated frame 406 is formed in the peripheral area 404. The insulated protrusions 413 and the insulated frame 406 are formed as disclosed in the first embodiment.
Referring to FIG. 9, a transparent conductive layer (not shown) is formed on the substrate 401, for supporting a plurality of first conductive patterns 403, a plurality of second conductive patterns 407, and a plurality of connecting portions 405 in the touching area 402. The arrangement of the first conductive patterns 403, the second conductive patterns 407, and the connecting portions 405 is substantially the same as that of the first conductive patterns 303, the second conductive patterns 307, and the connecting portions 305 of the first embodiment. Each bridging member 427 connects two second conductive patterns 407, and each connecting portion 405 covers parts of one insulated protrusion 413.
A plurality of conductive wires 408 is formed on the insulated frame 406. Parts of the conductive wires 408 connect with parts of the first conductive patterns 403, respectively. The other parts of the conductive wires 408 connect with parts of the second conductive patterns 407, respectively. Then a protective layer (not shown) is formed on the substrate 401 and covers the entire touching area 402 and the entire peripheral area 404. Thus, a capacitance touch panel module 400 with a higher transmittance is formed.
Referring to FIGS. 6 through 9, the second embodiment of the method of fabricating a capacitance touch panel module is described in the following: in step S601, a substrate 401 comprising a touching area 402 and a peripheral area 404 around the touching area 402 is provided; in step S603, a bridging member 427 is formed in the touching area 402; in step S605, a plurality of insulated protrusions 413 in the touching area 402 and an insulated frame 406 in the peripheral area 404 are formed, wherein each insulated protrusion 413 at least partially covers one bridging member 427; in step S607, a plurality of first conductive patterns 403, a plurality of second conductive patterns 407, and a plurality of connecting portions 405 are formed, in which the first conductive patterns 403 are arranged in a plurality of rows along a first orientation 409, the second conductive patterns 407 are arranged between neighboring rows of the first conductive patterns 403, and wherein each connecting portion 405 connects two neighboring first conductive patterns 403 arranged in a row, each bridging member 427 connects two neighboring second conductive patterns 407, and the first conductive patterns 403 are electrically insulated from the second conductive patterns 407.
The capacitance touch panel modules 300, 400 set the substrate 301, 401 as the touching portion, such that no protective lens is needed in the capacitance touch panel modules 300, 400, which thereby able to provide higher transmittance. The touching structures of the capacitance touch panel modules 300, 400 are formed by lithography or photo etching, such that no optical adhesive is required in the fabrication method.
Finally, while various embodiments have been described and illustrated, the disclosure is not to be construed as being limited thereto. Various modifications can be made to the embodiments by those skilled in the art without departing from the true spirit and scope of the disclosure as defined by the appended claims.


1. A capacitance touch panel, comprising:
a substrate comprising a touching area and a peripheral area around the touching area;
a plurality of insulated protrusions in the touching area;
an insulated frame in the peripheral area;
a plurality of first conductive patterns arranged in a plurality of rows along a first orientation;
a plurality of second conductive patterns arranged along a second orientation and arranged between neighboring rows of the first conductive patterns, wherein the first conductive patterns are electrically insulated from the second conductive patterns;
a plurality of connecting portions, wherein each connecting portion connects two neighboring ones of the first conductive patterns arranged in a row;
a plurality of bridging members electrically connecting two neighboring ones of the second conductive patterns; and
an overlapping region comprising a first region and a second region, wherein the overlapping region is an area on which one of the bridging members overlaps one of the second conductive patterns, the bridging member is directly on the second conductive pattern in the first region, and one of the insulated protrusions is directly on the second conductive pattern in the second region;
wherein one of the insulated protrusions has a curved surface and covers one of the connecting portions; and
wherein the length of the first region along the second orientation is longer than the length of the second region along the second orientation.
2. The capacitance touch panel of claim 1, wherein one of the insulated protrusions covers one of the connecting portions, and one of the bridging members crosses the insulated protrusion.
3. The capacitance touch panel of claim 1, wherein one of the insulated protrusions covers one of the bridging members, and one of the connecting portions crosses the insulated protrusion.
4. The capacitance touch panel of claim 1 further comprising a plurality of conductive wires on the insulated frame, connecting to the first conductive patterns and the second conductive patterns respectively.
5. The capacitance touch panel of claim 4, wherein one of the conductive wires extends from the corresponding first conductive patterns or the corresponding second conductive patterns to the top surface of the insulated frame along the curved side surface.
6. The capacitance touch panel of claim 1, wherein the insulated protrusions and the insulated frame are made of light absorbing materials.
7. The capacitance touch panel of claim 1 further comprising a protective layer covering the touching area and the peripheral area.
8. A method of fabricating a capacitance touch panel, comprising:
providing a substrate comprising a touching area and a peripheral area around the touching area;
forming a plurality of insulated protrusions in the touching area;
forming an insulated frame in the peripheral area;
forming a plurality of first conductive patterns arranged in a plurality of rows along a first orientation;
forming a plurality of second conductive patterns arranged along a second orientation and arranged between neighboring rows of the first conductive patterns, wherein the first conductive patterns are electrically insulated from the second conductive patterns;
forming a plurality of connecting portions, wherein each connecting portion connects two neighboring ones of the first conductive patterns arranged in a row;
forming a plurality of bridging members electrically connecting two neighboring ones of the second conductive patterns; and
forming an overlapping region comprising a first region and a second region, wherein the overlapping region is the area on which one of the bridging members overlaps one of the second conductive patterns, the bridging member is directly on the second conductive pattern in the first region, and one of the insulated protrusions is directly on the second conductive pattern in the second region;
wherein one of the insulated protrusions has a curved surface and covers one of the connecting portions; and
wherein the length of the first region along the second orientation is longer than the length of the second region along the second orientation.
9. The method of fabricating a capacitance touch panel of claim 8, wherein the insulated protrusions and the insulated frame are made of light absorbing materials.
10. The method of fabricating a capacitance touch panel of claim 8, wherein step of forming the insulated protrusions and step of forming the insulated frame are performed by ink jet printing.
11. The method of fabricating a capacitance touch panel of claim 8, wherein step of forming a plurality of bridging members further comprises forming a plurality of conductive wires on the insulated frame, connecting to the first conductive patterns and the second conductive patterns respectively.
12. The method of fabricating a capacitance touch panel of claim 11, wherein one of the conductive wires extends from the corresponding first conductive pattern or the corresponding second conductive patterns to the top surface of the insulated frame along the curved side surface.
13. The method of fabricating a capacitance touch panel of claim 8 further comprising forming a protective layer covering the touching area and the peripheral area.

 

 

Patent trol of patentswamp
Similar patents
an example of droplet discharge device includes a discharge path having an end that constitutes a discharge opening , a plunger , a liquid chamber into which the plunger is inserted, a plunger driving mechanism that moves the plunger forward and backward, and a plunger position determining mechanism that specifies a position of a tip portion of the plunger . the liquid material is discharged in a droplet state by applying inertial force to the liquid material with forward movement of the plunger in a state where the tip portion of the plunger and an inner wall of the liquid chamber are not contacted with each other. a minute droplet is formed by moving the plunger forward to push the liquid material out of the discharge opening in an amount necessary to form a droplet of a desired size.
a transparent conductive film, includes: a transparent substrate, wherein a transparent substrate includes a body and a flexible board, a width of flexible board is less than that of the body, and the body includes a sensing area and a border area located at an edge of the sensing area; a conduction line, disposed on a transparent flexible substrate; a first conductive layer and a second conductive layer, disposed on two sides of the sensing area opposite to each other; a first electrode trace and a second electrode trace, disposed on the border area, and the first conductive layer and the conduction line are electrically connected through a first electrode trace; the second conductive layer and the conduction line are electrically connected through a second electrode trace. the production efficiency of the above transparent conductive film is improved.
a process for printing a metal wire pattern on a substrate, including: printing a first salt solution including a metal ion that will undergo a reduction half-reaction; printing a second salt solution containing a reductant that will undergo an oxidation half-reaction in contact with the first salt solution, resulting in the reduction of the metal ions of the first salt solution; and allowing the first and second salt solutions to react by a galvanic reaction, causing reduced metal ions of the first salt solution to precipitate as a solid, on the substrate.
Snow removal machine // US9435091
a snow removal machine including a travel unit frame having travel units, and an auger housing liftable, lowerable and rollable relative to the travel unit frame. the machine also includes: a frame inclination angle detection section for detecting an inclination angle of the travel frame relative to a ground surface; a housing inclination angle detection section for detecting an inclination angle of the auger housing relative to the travel unit frame; and an overall inclination angle evaluation section for evaluating an overall inclination angle of the auger housing relative to the ground surface on the basis of the inclination angles detected by the two detection sections. the two detection sections are provided on a part of the machine which does not make rolling motion together with the auger housing.
a method of fabricating a capacitance touch panel module includes forming a plurality of first conductive patterns on a substrate comprising a touching area and a peripheral area along a first orientation, a plurality of second conductive patterns along a second orientation, and a plurality of connecting portions in the touching area; forming a plurality of insulated protrusions, in which each insulated protrusion covering one connecting portion, and forming an insulated frame on the peripheral area; and forming a bridging member on each insulated protrusion.
a predimensioned rectangular screen for silk screening having the edges folded back on the main body, forming pockets along each edge for receiving tensioning rods to secure the screen to the frame. the edges are secured to the main body with a bonding material which also forms a seal.
a method of printing solder paste in a component board and a stencil set for doing the same are disclosed. in one embodiment, the method includes using a first stencil having a first thickness to print solder paste into at least one through hole in the component board. the method further includes using a second stencil having a second thickness to print solder paste for at least one surface mounted part on the component board, subsequent to using the first stencil.
a multi-layer micro-wire structure resistant to cracking including a substrate having a surface, one or more micro-channels formed in the substrate, an electrically conductive first material composition forming a first layer located in each micro-channel, and an electrically conductive second material composition having a greater tensile ductility than the first material composition forming a second layer located in each micro-channel, the first material composition and the second material composition in electrical contact to form an electrically conductive multi-layer micro-wire in each micro-channel, whereby the multi-layer micro-wire is resistant to cracking.
a method of making a multi-level micro-wire structure includes imprinting first micro-channels in a curable first layer over a substrate, curing the first layer, and locating and curing a curable conductive ink in the first micro-channels to form first micro-wires. multi-level second micro-channels are imprinted in a curable second layer in contact with the first layer with a multi-level stamp, the second layer is cured, and a curable conductive ink is located and cured in the multi-level second micro-channels to form multi-level second micro-wires. at least one of the multi-level second micro-channels contacts at least one first micro-wire. a multi-level second micro-wire in at least one of the multi-level second micro-channels is in electrical contact with at least one first micro-wire.
a component mounting line has a screen printing apparatus and component mounting apparatuses. the screen printing apparatus carries in substrates based on substrate carrying-in order data which is determined so that alternate carrying-in in which a first type substrate and a second type substrate are alternately carried in and continuous carrying-in in which the first type substrate or the second type substrate which has a shorter line tact time is continuously carried in are mixed.
To top