Detectable overlay targets with strong definition of center locations

 

An overlay target for a semiconductor device is disclosed. The overlay measurement target includes a first ring target located on a first measured layer of the semiconductor device. The first ring target includes a plurality of detectable features arranged in a circular manner having a first circumference. The overlay measurement target also includes a second ring target located on a second measured layer of the semiconductor device. The second ring target includes a plurality of detectable features arranged in a circular manner having a second circumference different from the first circumference. The displacement between a detected center of the first ring target and a detected center of the second ring target indicates an overlay error between the first measured layer and the second measured layer.

 

 

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 61/754,755, filed Jan. 21, 2013. Said U.S. Provisional Application Ser. No. 61/754,755 is hereby incorporated by reference in its entirety.
TECHNICAL FIELD
The disclosure generally relates to the field of semiconductor fabrication, particularly to configurations of metrology targets used for semiconductor device fabrication.
BACKGROUND
Thin polished plates such as silicon wafers and the like are a very important part of modern technology. A wafer, for instance, refers to a thin slice of semiconductor material used in the fabrication of integrated circuits and other devices. Other examples of thin polished plates may include magnetic disc substrates, gauge blocks and the like. Modern semiconductor devices are typically fabricated from layers of wafers. Precise positioning and alignment during semiconductor fabrication is of critical importance.
SUMMARY
The present disclosure is directed to a semiconductor device. The semiconductor device utilizes an overlay measurement target that includes a first ring target located on a first measured layer of the semiconductor device. The first ring target includes a plurality of detectable features arranged in a circular manner having a first circumference. The overlay measurement target also includes a second ring target located on a second measured layer of the semiconductor device. The second ring target includes a plurality of detectable features arranged in a circular manner having a second circumference different from the first circumference. The displacement between a detected center of the first ring target and a detected center of the second ring target indicates an overlay error between the first measured layer and the second measured layer.
The present disclosure is also directed to a metrology system. The metrology system includes an imaging device and a processor. The imaging device is configured for obtaining an image of a semiconductor device. The processor is configured for: identifying a first ring target from the image of the semiconductor device, the first ring target including a plurality of detectable features arranged in a circular manner having a first circumference; detecting a center of the first ring target; and utilizing the detected center of the first ring target for overlay measurement.
The present disclosure is further directed to an overlay target for a processing layer of a semiconductor device. The overlay target includes a plurality of detectable features spaced equally apart from each other and arranged in a circular manner having a predetermined diameter.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not necessarily restrictive of the present disclosure. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate subject matter of the disclosure. Together, the descriptions and the drawings serve to explain the principles of the disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
The numerous advantages of the disclosure may be better understood by those skilled in the art by reference to the accompanying figures in which:
FIG. 1 is an illustration depicting an overlay target printed on a processing layer;
FIG. 2 is an illustration depicting the overlay target in accordance with certain embodiments of the present disclosure;
FIG. 3 is an illustration depicting a mathematically constructed circle utilized for detecting a center of a ring target;
FIG. 4 is an illustration depicting the mathematically constructed circle utilized for detecting the center of the ring target of FIG. 3, wherein the mathematically constructed circle is shifted downwardly with respect to FIG. 3;
FIG. 5 is an illustration depicting the mathematically constructed circle utilized for detecting the center of the ring target of FIGS. 3 and 4, wherein the mathematically constructed circle is shifted further downwardly with respect to FIG. 4;
FIG. 6 is a block diagram depicting a metrology system; and
FIG. 7 is a flow diagram illustrating a method for measuring overlay utilizing metrology targets obtained by the metrology system.
DETAILED DESCRIPTION
Reference will now be made in detail to the subject matter disclosed, which is illustrated in the accompanying drawings.
Lithographic metrology and in particular, overlay measurements, employ overlay measurement targets to facilitate precise positioning and alignment of various layers during semiconductor fabrication processes. Overlay target marks or patterns are typically printed on the different layers and are resolved in microscopes using visible light. Misalignment between such marks or patterns may be detected and measured.
It is noted that since overlay targets consume real estate available on each layer, it is therefore desirable to reduce the size of such targets. More specifically, small targets that are less than 11 micrometers, or even less than 5 micrometers may be desirable. However, reduced target size may also result in reduced measurement accuracy. Therein lies a need for small overlay targets with strong definition of center locations for accurate measurement results.
Referring generally to FIGS. 1 and 2, illustrations depicting a measurement target 100 for a process layer 102 of a semiconductor device is shown. The target 100 includes multiple detectable features 104 spaced equally apart from each other and forming a circumference of a circle. The center 106 of the circle defined by the detectable features 104 located on one particular process layer may be detected and compared against the center 108 of the circle defined by the detectable features 110 located on another process layer when the two process layers are overlaid.
As shown in FIG. 2, the displacement of the centers between two circles belonging to two different process layers indicates the overlay error. If the two circles are concentric, on the other hand, precise positioning and alignment for these two layers may be indicated. It is contemplated that larger circles may be used on layers that are harder to optically detect as larger circles generally contains more information, allowing the center locations to be determined more accurately. It is also contemplated that the number of process layers utilizing such features for overlay is not limited to two. That is, circles belonging to more than two different process layers can be utilized in the same manner without departing from the spirit and scope of the present disclosure.
A target having detectable features arranged in a circular manner in accordance with the present disclosure may be referred to as a ring target. It has been observed that arranging the detectable features of a ring target in such a manner makes the target very sensitive to its center location. In addition, the highly symmetric nature of such a target allows its center to be detected very accurately. And as described above, since the overlay is measured based on the detected center locations rather than the individual positions of the resolved features themselves, the detectable features of a ring target do not need to be individually resolved optically by imaging tools (e.g., microscopes) of a metrology system. This requirement for detectability (of the center location of the ring) rather than resolution (of each individual feature) allows the target size to be reduced to below 11 or even 5 micrometers.
It is contemplated that the detectable features of the same ring target may be configured to be substantially identical with respect to each other. However, different ring targets may be formed utilizing different detectable features. For instance, a detectable feature may be configured as a small dot feature, square feature, circular feature, line feature or the like without departing from the spirit and scope of the present disclosure.
It is also contemplated that various techniques may be utilized to find center locations of given ring targets. In one embodiment, the center of each ring target is found by shifting/sliding a mathematically constructed circle over the image of the ring target (e.g., image obtained by the metrology system) and looking for maximal overlap, expressed by a pure periodical signal. This center finding technique is demonstrated in a series of time-based illustrations shown in FIGS. 3 through 5.
More specifically, a mathematically constructed circle 302 is constructed for a ring target 300. The mathematically constructed circle 302 may then be positioned in proximity to the image of the ring target 300 and the signal overlap between the mathematically constructed circle 302 and target features 300 may be measured. Subsequently, the mathematically constructed circle 302 may be shifted (in a downward direction in the examples shown in FIGS. 3 through 5) slightly and the signal overlap between the mathematically constructed circle 302 and target features 300 may be measured again. This process may be repeated a number of times as the mathematically constructed circle 302 is being shifted, and the maximal overlap between the mathematically constructed circle 302 and target features 300 may be identified as the result.
This is further illustrated using the angular intensity signal Fourier transform of the overlap signals depicted in FIGS. 3 through 5. In this example, signal 304 represents the measured angular intensity and signal 306 represents the Fourier transform of the angular intensity. It is noted that the tangential sampling of the target will provide two spatial frequencies (in tangential direction), FN and F2, where N is the number of detectable features (dots) in the ring, and F2 is the overlap frequency. The ratio FN/F2 can be utilized to determine when the overlap is maximized. More specifically, when the overlap of the ring is not perfect, the amplitude of F2 is high and the ratio FN/F2 (signal 308) is low as shown in FIG. 3. As the mathematically constructed circle 302 moves downward, and when the overlap of the ring is perfect, amplitude of F2 is ˜0 and the ratio FN/F2 is maximized as shown in FIG. 4. Furthermore, as the mathematically constructed circle 302 continues to move downward, the amplitude of F2 increases again and the ratio FN/F2 decreases again as shown in FIG. 5. In the example described above, the position of the mathematically constructed circle 302 as shown in FIG. 4 provides the maximal overlap with the target features 300. Therefore, the center location of this mathematically constructed circle 302 can be utilized as the detected center location of the target features 300.
It is contemplated that while the mathematically constructed circle 302 is shifted in a downward direction in the examples above, such a direction is merely exemplary, and the mathematically constructed circle 302 may be shifted in other directions as needed without departing from the spirit and scope of the present disclosure.
Referring now to FIG. 6, a block diagram depicting a metrology system 600 capable of performing the various measurement processes described above is shown. The metrology system 600 may include an imaging devices (e.g., a scanner, a microscope or the like) 602 configured for obtaining images of a semiconductor device 606 (e.g., a wafer). For instance, the imaging device 602 may capture an aerial image (e.g., top views) of the semiconductor device 606 and provide the image to a processor 604 configured for processing the obtained image. It is contemplated that the metrology system 600 may include more than one imaging device without departing from the spirit and scope of the present disclosure. Certain metrology systems may provide the abilities to capture both sides of the semiconductor device simultaneously.
The processor 604 may be implemented utilizing any standalone or embedded computing device (e.g., a computer, a processing unit/circuitry or the like). Upon receiving the image from the imaging device 602, the processor 604 may identify one or more targets 608 present on the wafer 606 and carry out the various measurement processes described above.
For instance, FIG. 7 illustrates a method 700 for measuring overlay utilizing metrology targets 608 obtained by the metrology system 600. Once the image of the semiconductor wafer is obtained in step 702, step 704 may then identify a plurality of metrology targets from the image of the semiconductor wafer. Each of the plurality of metrology targets may include a ring target as described above, and step 706 may detect the center location of each ring target accordingly. Step 708 may measure the overly error based on any displacement of the center locations detected.
The methods disclosed may be implemented as sets of instructions, through a single production device, and/or through multiple production devices. Further, it is understood that the specific order or hierarchy of steps in the methods disclosed are examples of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the method can be rearranged while remaining within the scope and spirit of the disclosure. The accompanying method claims present elements of the various steps in a sample order, and are not necessarily meant to be limited to the specific order or hierarchy presented.
It is believed that the system and method of the present disclosure and many of its attendant advantages will be understood by the foregoing description, and it will be apparent that various changes may be made in the form, construction and arrangement of the components without departing from the disclosed subject matter or without sacrificing all of its material advantages. The form described is merely explanatory.


1. A semiconductor device, the semiconductor device including an overlay measurement target, the overlay measurement target comprising:
a first ring target located on a first measured layer of the semiconductor device, the first ring target including a plurality of detectable features arranged in a circular manner having a first circumference; and
a second ring target located on a second measured layer of the semiconductor device, the second ring target including a plurality of detectable features arranged in a circular manner having a second circumference different from the first circumference,
wherein a center of the first ring target is detectable by:
constructing a first mathematically constructed circle overlaid on a portion of an image of the semiconductor device including the first ring target, wherein a circumference of the first mathematically constructed circle is aligned along the plurality of detectable features associated with the first ring target, and
determining the center of the first ring target as a center of the first mathematically constructed circle,
wherein a center of the second ring target is detectable by:
constructing a second mathematically constructed circle overlaid on a portion of an image of the semiconductor device including the second ring target, wherein a circumference of the second mathematically constructed circle is aligned along the plurality of detectable features associated with the second ring target, and
determining the center of the second ring target as a center of the second mathematically constructed circle, and
wherein a displacement between the center of the first ring target and the center of the second ring target indicates an overlay error between the first measured layer and the second measured layer.
2. The semiconductor device of claim 1, wherein two or more detectable features of the plurality of detectable features in the first ring target are spaced equally along the first circumference, and two or more detectable features of the plurality of detectable features in the second ring target are spaced equally along the second circumference.
3. The semiconductor device of claim 1, wherein two or more detectable features of the plurality of detectable features in the first ring target are identical, and two or more detectable features of the plurality of detectable features in the second ring target are identical.
4. The semiconductor device of claim 1, wherein at least one of one or more detectable features of the plurality of detectable features in the first ring target or one or more detectable features of the plurality of detectable features in the second ring target is circular features.
5. The semiconductor device of claim 1, wherein at least one of one or more detectable features of the plurality of detectable features in the first ring target or one or more detectable features of the plurality of detectable features in the second ring target is smaller than a resolution limit of the semiconductor device.
6. The semiconductor device of claim 2, wherein constructing at least one of the first mathematically constructed circle or the second mathematically constructed circle overlaid on a portion of an image of the semiconductor device including at least one of the first ring target or the second ring target further comprises adjusting a ratio FN/F2, wherein FN represents a spatial frequency associated with N detectable features associated with the at least one of the first ring target or the second ring target, and F2 represents an overlap frequency.
7. A metrology system, comprising:
an imager, the imager configured for obtaining an image of a semiconductor device; and
a processor, the processor configured for:
identifying a first ring target from the image of the semiconductor device, the first ring target including a plurality of detectable features arranged in a circular manner having a first circumference;
detecting a center of the first ring target by:
constructing a first mathematically constructed circle overlaid on a portion of the image of the semiconductor device including the first ring target, wherein a circumference of the first mathematically constructed circle is aligned along the plurality of detectable features associated with the first ring target, and
determining the center of the first ring target as a center of the first mathematically constructed circle; and
utilizing the detected center of the first ring target for overlay measurement.
8. The metrology system of claim 7, wherein the processor detects the center of the first ring target by shifting the first mathematically constructed circle to detect a maximal overlap with the first ring target.
9. The metrology system of claim 7, wherein two or more detectable features of the plurality of detectable features in the first ring target identified by the processor are spaced equally along the first circumference.
10. The metrology system of claim 7, wherein the processor is configured for:
identifying a second ring target from the image of the semiconductor device, the second ring target including a plurality of detectable features arranged in a circular manner having a second circumference different from the first circumference;
detecting a center of the second ring target by:
constructing a second mathematically constructed circle overlaid on a portion of the image of the semiconductor device, wherein a circumference of the second mathematically constructed circle is aligned along the plurality of detectable features associated with the second ring target, and
determining the center of the second ring target as a center of the second mathematically constructed circle; and
measuring a displacement between the detected center of the first ring target and the detected center of the second ring target.
11. The metrology system of claim 9, wherein two or more detectable features of the plurality of detectable features in the first ring target are identical.
12. The metrology system of claim 10, wherein at least one of one or more detectable features of the plurality of detectable features in the first ring target or one or more detectable features of the plurality of detectable features in the second ring target is smaller than a resolution limit of the metrology system.
13. The metrology system of claim 10, wherein the processor detects the center of the second ring target by shifting the second mathematically constructed circle to detect a maximal overlap with the second ring target.
14. The metrology system of claim 10, wherein the first ring target is located on a first processing layer of the semiconductor device and the second ring target is located on a second processing layer of the semiconductor device.
15. The metrology system of claim 10, wherein two or more detectable features of the plurality of detectable features in the second ring target identified by the processor are spaced equally along the second circumference.
16. The metrology system of claim 14, wherein the displacement between the detected center of the first ring target and the detected center of the second ring target indicates an overlay error between the first processing layer and the second processing layer.
17. The metrology system of claim 15, wherein two or more detectable features of the plurality of detectable features in the second ring target are identical.
18. The metrology system of claim 15, wherein constructing at least one of the first mathematically constructed circle or the second mathematically constructed circle overlaid on a portion of an image of the semiconductor device including at least one of the first ring target or the second ring target further comprises adjusting a ratio FN/F2, wherein FN represents a spatial frequency associated with N detectable features associated with the at least one of the first ring target or the second ring target, and F2 represents an overlap frequency.
19. An overlay measurement method comprising:
obtaining an image of a semiconductor device;
identifying a first ring target from the image of the semiconductor device, the first ring target including a plurality of detectable features arranged in a circular manner having a first circumference;
detecting a center of the first ring target by:
constructing a first mathematically constructed circle overlaid on a portion of the image of the semiconductor device including the first ring target, wherein a circumference of the first mathematically constructed circle is aligned along the plurality of detectable features associated with the first ring target, and
determining the center of the first ring target as a center of the first mathematically constructed circle; and
utilizing the detected center of the first ring target for overlay measurement.
20. The method of claim 19, wherein two or more detectable features of the plurality of detectable features are identical.
21. The method of claim 19, wherein said constructing a first mathematically constructed circle overlaid on a portion of the image of the semiconductor device including the first ring target includes shifting the first mathematically constructed circle to detect a maximal overlap with the first ring target.
22. The method of claim 19, further comprising:
identifying a second ring target from the image of the semiconductor device, the second ring target including a plurality of detectable features arranged in a circular manner having a second circumference different from the first circumference; and
detecting a center of the second ring target by:
constructing a second mathematically constructed circle overlaid on a portion of the image of the semiconductor device including the second ring target, wherein a circumference of the second mathematically constructed circle is aligned along the plurality of detectable features associated with the second ring target, and
determining the center of the second ring target as a center of the second mathematically constructed circle; and
utilizing the detected center of the first ring target and the detected center of the second ring for the overlay measurement.
23. The method of claim 22, wherein said constructing a second mathematically constructed circle overlaid on a portion of the image of the semiconductor device including the second ring target includes shifting the second mathematically constructed circle to detect a maximal overlap with the second ring target.
24. The method of claim 22, wherein the overlay measurement is measured by a displacement between the detected center of the first ring target and the detected center of the second ring target.
25. The method of claim 22, wherein two or more detectable features of the plurality of detectable features in the first ring target are spaced equally along the first circumference, and two or more detectable features of the plurality of detectable features in the second ring target are spaced equally along the second circumference.
26. The method of claim 25, wherein constructing at least one of the first mathematically constructed circle or the second mathematically constructed circle overlaid on a portion of an image of the semiconductor device including at least one of the first ring target or the second ring target further comprises adjusting a ratio FN/F2, wherein FN represents a spatial frequency associated with N detectable features associated with the at least one of the first ring target or the second ring target, and F2 represents an overlap frequency.

 

 

Patent trol of patentswamp
Similar patents
a method of manufacturing a semiconductor device according to one embodiment includes: preparing a semiconductor water which is partitioned into a plurality of first semiconductor chips, the plurality of first semiconductor chips including a first group of first semiconductor chips and a second group of first semiconductor chips; providing a second semiconductor chip over at least one of first semiconductor chips of the first group; providing a sealer on the first semiconductor chips of the second group; and grinding one face of the semiconductor wafer which is on the opposite side from a face on which the second semiconductor chip and the sealer are provided.
Electronic modules // US9425069
electronic modules are formed by encapsulating microelectronic dies within cavities in a substrate.
the present disclosure discloses a positioning graphic component for substrate detection and a method of manufacturing the same. the positioning graphic component for substrate detection comprises at least two layers of metal layer patterns and an insulation layer placed between any two layers of metal layer patterns. the present disclosure solves the problem of the occurrence of an incomplete positioning graphic component due to incomplete coverage by the insulation layer in processing tft lcds, thus improving the yield.
a semiconductor component includes a semiconductor substrate, and a doped well having a well terminal and a transistor structure having at least one potential terminal formed in the semiconductor substrate. the transistor structure has a parasitic thyristor, and is at least partly arranged in the doped well. the potential terminal and the well terminal are connected via a resistor.
a method of manufacturing a display device is disclosed. in one aspect, the method includes forming an active layer over a substrate, forming a first insulating layer over the active layer, forming a gate electrode over the active layer, and forming an alignment mark over the substrate. the forming of the alignment mark includes forming a first layer including a first pattern and forming a second layer over the first layer and including concave and convex portions formed along the first pattern. the first insulating layer is interposed between the first and second layers.
Semiconductor package // US9418944
a semiconductor package includes a support substrate; a stress relaxation layer provided on a main surface of the support substrate; a semiconductor device located on the stress relaxation layer; an encapsulation material covering the semiconductor device, the encapsulation material being formed of an insulating material different from that of the stress relaxation layer; a line running through the encapsulation material and electrically connected to the semiconductor device; and an external terminal electrically connected to the line. where the support substrate has an elastic modulus of a, the stress relaxation layer has an elastic modulus of b, and the encapsulation material has an elastic modulus of c under a same temperature condition, the relationship of a>c>b or c>a>b is obtained.
a semiconductor package including a marking film and a method of fabricating the same are provided wherein a marking film including a thermoreactive layer may be applied to a molding layer to protect a semiconductor chip under the molding layer and to efficiently perform a marking process. the thickness of the molding layer may thereby be reduced so the entire thickness of the semiconductor package may be reduced. also, it is possible to prevent warpage of the semiconductor package through the marking film, provide the surface of the semiconductor package with gloss and freely adjust the color of the surface of the semiconductor package.
an adaptive patterning method and system for fabricating panel based package structures is described. misalignment for individual device units in a panel or reticulated wafer may be adjusted for by measuring the position of each individual device unit and forming a unit-specific pattern over each of the respective device units.
embodiments of the present disclosure are directed to die adhesive films for integrated circuit packaging, as well as methods for forming and removing die adhesive films and package assemblies and systems incorporating such die adhesive films. a die adhesive film may be transparent to a first wavelength of light and photoreactive to a second wavelength of light. in some embodiments, the die adhesive film may be applied to a back or “inactive” side of a die, and the die surface may be detectable through the die adhesive film. the die adhesive film may be cured and/or marked with laser energy having the second wavelength of light. the die adhesive film may include a thermochromic dye and/or nanoparticles configured to provide laser mark contrast. uv laser energy may be used to remove the die adhesive film in order to expose underlying features such as tsv pads.
a method for defining patterns in an integrated circuit comprises defining a plurality of features in a first photoresist layer using photolithography over a first region of a substrate. the method further comprises using pitch multiplication to produce at least two features in a lower masking layer for each feature in the photoresist layer. the features in the lower masking layer include looped ends. the method further comprises covering with a second photoresist layer a second region of the substrate including the looped ends in the lower masking layer. the method further comprises etching a pattern of trenches in the substrate through the features in the lower masking layer without etching in the second region. the trenches have a trench width.
To top