Liquid crystal lens and liquid crystal display device

 

A liquid crystal lens and a liquid crystal display device. The liquid crystal lens includes a first substrate, a second substrate deposed oppositely, and a liquid crystal layer. A metal layer, an insulation layer, and an electrode layer are stacked on the second substrate adjacent to the first substrate. The electrode layer includes multiple electrodes disposed separately. Wherein, among the multiple electrodes disposed separately, a height of the electrode which a maximum voltage is applied on is lower than a height of an adjacent electrode. By the above way, the actual equivalent refractive index neff of the liquid crystal molecules corresponding to the electrode which the maximum voltage is applied on is close to an equivalent refractive index in an ideal condition. As a result, the three-dimensional crosstalk can be reduced and the 3D display effect can be improved.

 

 

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present application relates to a technical field of a display apparatus, and more particularly to a liquid crystal lens and a liquid crystal display device.
2. Description of Related Art
A stereoscopic display device usually adopts a naked-eye three-dimensional display. The naked-eye three-dimensional display mainly installs a light splitting device such as a liquid crystal lens at a light-emitting side of a two-dimensional (2D) display panel to respectively transmit an image having a left-right parallax and displayed on the screen panel to a viewer's left eye and right eye. Through the mixing of the brain, the viewer can obtain a stereoscopic perception.
Wherein, the liquid crystal lens mainly adopts a transparent material to manufacture a rod-lens array with a certain size. Through refraction, the lights in different pixels of the display panel emit with different polarization directions in order to separate the image having the left-right parallax.
With reference to FIG. 1, FIG. 1 is a schematic diagram of a lens unit of a liquid crystal lens according to the prior art. As shown in FIG. 1a, when no voltage is applied on the liquid crystal lens, the deflection directions of the liquid crystal molecules corresponding to two adjacent and strip-shaped electrodes are the same. At this time, a center and an edge of the liquid crystal layer corresponding to the electrodes have no difference in the refractive index.
As shown in FIG. 1b, when a voltage is applied on each of the electrodes of the liquid crystal lens, the liquid crystal molecules generate deflections under the function of the electric field. The center and the edge of the liquid crystal layer corresponding to the electrodes generate a difference in the refractive index. In a focus mode, phases form a lens-like distribution. The viewer can obtain a 3D image having a left-right parallax. Wherein, different electrodes are applied with different voltages. The liquid crystal molecules corresponding to the electrode which a maximum voltage is applied on are straightest such that the equivalent refractive index neff is the smallest. Two electrodes which the maximum voltage is applied define an opening width value of one lens unit.
As shown in FIG. 2, L1 is a curve diagram of the equivalent refractive index corresponding to the lens unit of the liquid crystal lens in an ideal condition, and L2 is a curve diagram of the equivalent refractive index corresponding to the lens unit of the liquid crystal lens in an actual condition. Wherein, in the ideal condition, when the electrode is applied with a maximum voltage, the equivalent refractive index neff of the liquid crystal molecules is n0 (n0=1.55).
Because the liquid crystal molecules are affected by an alignment film and the liquid crystal molecules squeeze and push with each other at an edge of two lens units. As a result, when the maximum voltage is applied on the edge of the two adjacent lens units, the liquid crystal molecules corresponding to the strip-shaped electrode at the edge of the two adjacent lens units cannot be completely straight. The above situation cannot be improved even increasing the maximum voltage such that the actual neff is greater than n0. As a result, the three-dimensional (3D) crosstalk is generated and the 3D display effect is affected.
SUMMARY OF THE INVENTION
The main technical problem solved by the present invention is to provide a liquid crystal lens and a liquid crystal display device such that the actual equivalent refractive index of the liquid crystal molecules corresponding to the electrode which the maximum voltage is applied on is close to an equivalent refractive index in an ideal condition. As a result, the three dimensional (3D) crosstalk can be reduced and the 3D display effect can be improved.
In order to solve the above technical problem, an embodiment of the present invention provides: a liquid crystal lens, comprising: a first substrate; a second substrate disposed oppositely to the first substrate; a liquid crystal layer disposed between the first substrate and the second substrate; and multiple lens units, wherein, a first and a second electrode of each of the lens units are applied with a same and maximum voltage; wherein, a metal layer, an insulation layer, and an electrode layer are stacked on a side of the second substrate adjacent to the first substrate; the electrode layer includes multiple electrodes disposed separately; among the multiple electrodes disposed separately, a height of the insulation layer corresponding to the electrode which the maximum voltage is applied on is lower than a height of the insulation layer corresponding to an adjacent electrode such that a height of the electrode which the maximum voltage is applied on is lower than a height of the adjacent electrode.
Wherein, the insulation layer corresponding to the electrode which the maximum voltage is applied on is empty such that the height of the electrode which the maximum voltage is applied on is lower than the height of the adjacent electrode.
Wherein, the maximum voltage applied on the first and the last electrodes is 12V.
In order to solve the above technical problem, another embodiment of the present invention provides: a liquid crystal lens, comprising: a first substrate; a second substrate disposed oppositely to the first substrate; and a liquid crystal layer disposed between the first substrate and the second substrate; wherein, a metal layer, an insulation layer, and an electrode layer are stacked on a side of the second substrate adjacent to the first substrate; the electrode layer includes multiple electrodes disposed separately; among the multiple electrodes disposed separately, a height of the electrode which a maximum voltage is applied on is lower than a height of an adjacent electrode.
In order to solve the above technical problem, another embodiment of the present invention provides: a liquid crystal display device including a liquid crystal lens and a display screen, and the liquid crystal lens is disposed on a surface of the display screen, wherein, the liquid crystal lens comprises: a first substrate; a second substrate disposed oppositely to the first substrate; and a liquid crystal layer disposed between the first substrate and the second substrate; wherein, a metal layer, an insulation layer, and an electrode layer are stacked on a side of the second substrate adjacent to the first substrate; the electrode layer includes multiple electrodes disposed separately; among the multiple electrodes disposed separately, a height of the electrode which a maximum voltage is applied on is lower than a height of an adjacent electrode.
The beneficial effect of the present application is: comparing to the prior art, through the height of the electrode which the maximum voltage is applied on is lower than the height of the adjacent electrode. And using the function of the side electric field to reduce the squeeze-push behavior between the liquid crystal molecules corresponding to the electrode which the maximum voltage is applied on and the adjacent electrode such that the actual equivalent refractive index of the liquid crystal molecules corresponding to the electrode which the maximum voltage is applied on is close to an equivalent refractive index in an ideal condition. As a result, the three-dimensional (3D) crosstalk can be reduced and the 3D display effect can be improved.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic diagram of a lens unit of a liquid crystal lens according to the prior art;
FIG. 2 is a curve diagram of the equivalent refractive index of the lens unit in FIG. 1;
FIG. 3 is a schematic diagram of a lens unit of a liquid crystal lens according to an embodiment of the present invention;
FIG. 4 is a curve diagram of the equivalent refractive index corresponding to the lens unit in FIG. 3;
FIG. 5 is a schematic diagram of a lens unit of a liquid crystal lens according to another embodiment of the present invention; and
FIG. 6 is a schematic diagram of a liquid crystal display device according to an embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The following description is for the purpose of illustration not for limitation, and specific details are proposed such as the system configuration, the interface, and the technique in order to completely understand the present application. However, the person skilled in the art should know, in other embodiments without these specific details can also achieve the present application. In other instances, well-known devices, circuits and methods are omitted to prevent the unnecessary details hindering the description of the present application.
With reference to FIG. 3, FIG. 3 is a schematic diagram of a lens unit of a liquid crystal lens according to the present invention. Wherein, a liquid crystal lens may include multiple lens units, and the structures of the multiple lens units are the same. In the present embodiment, the liquid crystal lens includes: a first substrate 110, a second substrate 120 disposed oppositely to the first substrate 110, and a liquid crystal layer 130 disposed between the first substrate 110 and the second substrate 120.
An electrode layer 111 is disposed at a side of the first substrate 110 adjacent to the second substrate 120. The electrode layer 111 is a common electrode. The common electrode 111 is an entire transparent indium-tin-oxide (ITO) electrode.
A metal layer 121, an insulation layer 122, and an electrode layer 123 are disposed at a side of the second substrate 120 adjacent to the first substrate 110. The electrode layer 123 includes multiple electrodes disposed separately. Wherein, a height of the electrode which a max voltage is applied on is lower than a height of an adjacent electrode. Two electrodes which the max voltage is applied voltage define an open width of a lens unit. That is, the two electrodes which the max voltage is applied on and the electrodes disposed between the two electrodes are defined as a lens unit. Each of the electrodes is a strip-shaped electrode.
When no voltage is applied on the liquid crystal lens, the deflection directions of the liquid crystal molecules corresponding to two adjacent electrodes are the same. At this time, a center and an edge of the liquid crystal layer corresponding to the electrodes have no difference in the refractive index.
When a voltage is applied on each of the electrodes of the liquid crystal lens, the liquid crystal molecules corresponding to the electrodes generate deflections, and the liquid crystal molecules corresponding to two adjacent electrodes generate a difference in the refractive index.
Wherein, for each lens unit, the number of the electrodes and the structure of each lens unit are the same. The voltages applied on the same electrodes for each lens unit are the same. In one lens unit, except that the first and the last electrodes are applied with a same voltage, the voltages applied on the other electrodes are different. The liquid crystal molecules corresponding to the electrode which a maximum voltage is applied on are the straightest such that the equivalent refractive index neff is the smallest.
Please also refer to FIG. 4; FIG. 4 is a curve diagram of the equivalent refractive index corresponding to the lens unit in FIG. 3. Wherein, L1 is a curve diagram of the equivalent refractive index corresponding to the lens unit in an ideal condition. L2 is a curve diagram of the equivalent refractive index corresponding to the lens unit in an actual condition.
The curve of the equivalent refractive index of the lens unit under the function of an electric field is a parabola with a downward opening. The liquid crystal molecules corresponding to the electrode which the maximum voltage is applied on has the smallest equivalent refractive index under the function of the electric field.
Because in the electrodes disposed separately, a height of the electrode which the maximum voltage is applied on is lower than a height of an adjacent electrode. A side electric field is generated between the electrode which the maximum voltage is applied on and the adjacent electrode. Under the function of the side electric field, the squeeze-push behavior between the liquid crystal molecules corresponding to the electrode which the maximum voltage is applied on and the adjacent electrode is reduced such that the actual equivalent refractive index neff of the liquid crystal molecules corresponding to the electrode which the maximum voltage is applied on is close to an equivalent refractive index n0 (n0=1.55) in an ideal condition. At this time, the actual equivalent refractive index neff of the lens unit is that 1.56≦neff<1.58.
In the present embodiment, the maximum voltage applied on each of the first and the last electrodes in each lens unit is 12V. The voltages applied on the other electrodes can be set according to an actual requirement. In another embodiment, the maximum voltage can be set to be another value.
In the present embodiment, the method for realizing that the height of the electrode which the maximum voltage is applied on is lower than the adjacent electrode among the electrodes disposed separately is: a height of an insulation layer corresponding to the electrode which the maximum voltage is applied on is lower than a height of an insulation layer corresponding to the adjacent electrode. At this time, the actual equivalent refractive index neff of the liquid crystal lens is that 1.56≦neff<1.58. In another embodiment, other methods may be used to realizing that the height of the electrode which the maximum voltage is applied on is lower than the adjacent electrode among the electrodes disposed separately.
By the above embodiments, through the height of the electrode which the maximum voltage is applied on is lower than the height of the adjacent electrode, and using the function of the side electric field to reduce the squeeze-push behavior between the liquid crystal molecules corresponding to the electrode which the maximum voltage is applied on and the adjacent electrode such that the actual equivalent refractive index neff of the liquid crystal molecules corresponding to the electrode which the maximum voltage is applied on is close to an equivalent refractive index in an ideal condition. As a result, the three dimensional (3D) crosstalk can be reduced and the 3D display effect can be improved.
With reference to FIG. 5, FIG. 5 is a schematic diagram of another structure of a lens unit according to another embodiment of the present invention. The difference is that the insulation layer corresponding to the electrode which the maximum is applied on is empty. That is, the first and the last electrodes of each of the lens units are directly disposed on the metal layer such that among the multiple electrodes disposed separately, the height of the electrode which the maximum voltage is applied on is lower than the height of the adjacent electrode. At this time, the actual equivalent refractive index of the liquid crystal lens is 1.56.
By the above embodiment, through the insulation layer corresponding to the electrode which the maximum voltage is applied on is empty such that the height of the electrode which the maximum voltage is applied on is lower than the height of the adjacent electrode. And using the function of the side electric field to reduce the squeeze-push behavior between the liquid crystal molecules corresponding to the electrode which the maximum voltage is applied on and the adjacent electrode such that the actual equivalent refractive index neff of the liquid crystal molecules corresponding to the electrode which the maximum voltage is applied on is close to an equivalent refractive index in an ideal condition. As a result, the three-dimensional (3D) crosstalk can be reduced and the 3D display effect can be improved.
With reference to FIG. 6, FIG. 6 is schematic diagram of a liquid crystal display device according to an embodiment of the present invention. The liquid crystal display device includes a liquid crystal lens 100 and a display screen 200. The liquid crystal lens 100 is disposed on a surface (i.e. a light emitting side) of the display screen 200. The liquid crystal lens 100 is the liquid crystal lens described above.
When no voltage is applied on the liquid crystal lens 100, the deflection directions of the liquid crystal molecules corresponding to adjacent two electrodes are the same. At this time, a center and an edge of the liquid crystal layer corresponding to the electrodes have no difference in the refractive index. The viewer can obtain a two-dimensional (2D) image without a parallax through the liquid crystal lens 100.
When a voltage is applied on the liquid crystal lens, the liquid crystal molecules corresponding to the electrodes generate deflections under the function of the electric field. The liquid crystal molecules corresponding to the adjacent two electrodes generate a difference in the refractive index. And in a focus mode, phases form a lens-like distribution. The viewer can obtain a 3D image with a left-right parallax through the liquid crystal lens 100.
By the above embodiment, through the height of the electrode which the maximum voltage is applied on is lower than the height of the adjacent electrode. And using the function of the side electric field to reduce the squeeze-push behavior between the liquid crystal molecules corresponding to the electrode which the maximum voltage is applied on and the adjacent electrode such that the actual equivalent refractive index neff of the liquid crystal molecules corresponding to the electrode which the maximum voltage is applied on is close to an equivalent refractive index in an ideal condition. As a result, the three-dimensional (3D) crosstalk can be reduced and the 3D display effect can be improved.
The above embodiments of the present invention are not used to limit the claims of this invention. Any use of the content in the specification or in the drawings of the present invention which produces equivalent structures or equivalent processes, or directly or indirectly used in other related technical fields is still covered by the claims in the present invention.


1. A liquid crystal lens, comprising:
a first substrate;
a second substrate disposed oppositely to the first substrate;
a liquid crystal layer disposed between the first substrate and the second substrate, and having liquid crystal molecules; and
multiple lens units, wherein, a first and a second electrode of each of the lens units define an opening width value of one of the multiple lens units, and the first and the second electrode are applied with a same and maximum voltage in the one of the multiple lens units;
wherein, a metal layer, a first insulation layer, and an electrode layer are stacked on a side of the second substrate adjacent to the first substrate, and the first insulation layer is disposed on the metal layer; the electrode layer includes multiple electrodes disposed separately, and the multiple electrodes include the first electrode and the second electrode which are directly disposed on the metal layer, and an adjacent electrode disposed on the first insulation layer, and the adjacent electrode is disposed between the first electrode and the second electrode; among the multiple electrodes disposed separately, a height of the first or the second electrode which the maximum voltage is applied on is lower than a height of the adjacent electrode such that the liquid crystal molecules corresponding to the first or the second electrode which the maximum voltage is applied on forms a smallest refractive index in the one of the multiple lens units.
2. The liquid crystal display device according to claim 1, wherein, the maximum voltage applied on the first and the second electrodes is 12V.

 

 

Patent trol of patentswamp
Similar patents
according to one embodiment, a device includes first and second substrate units, a liquid crystal layer. the first substrate unit includes a first substrate, first and second electrodes, an extraction electrode, and a dielectric material layer. the second substrate unit includes a second substrate and a third electrode. the liquid crystal layer is provided between the first and second substrates. the first electrodes are provided on the first substrate to extend in a first direction. the second electrodes are provided on the first substrate and extend along the first direction. the extraction electrode is for electrically connecting the second electrodes. the third electrode is provided on the second substrate to extend in a second direction intersecting the first direction.
an acousto-optic device having a wide range of diffraction angle and an optical scanner, a light modulator, and a display apparatus using the acousto-optic device are provided. the acousto-optic device includes a core layer having a periodic photonic crystal structure in which unit cells of predetermined patterns are repeated, a first clad layer on a first surface of the core layer, the first clad layer having a refractive index that is different from a refractive index of the core layer, a second clad layer on a second surface of the core layer, the second surface being opposite the first surface, the second clad layer having a refractive index that is different from the refractive index of the core layer, and a sound wave generator configured to apply surface acoustic waves to the core layer, the first clad layer, the second clad layer, or any combination thereof.
a method and system for integrated power combiners are disclosed and may include a chip comprising a polarization controller, the polarization controller comprising an input optical waveguide, optical couplers, and a polarization-splitting grating coupler. the chip may be operable to: generate two output signals from a first optical coupler that receives an input signal from said input optical waveguide, phase modulate one or both of the two output signals to configure a phase offset between the two generated output signals before communicating signals with the phase offset to a second optical coupler. one or both optical signals generated by said second optical coupler may be phase modulated to configure a phase offset between signals communicated to the polarization-splitting grating coupler; and an optical signal of a desired polarization may be launched into an optical fiber via the polarization-splitting grating coupler by combining the signals communicated to the polarization-splitting grating coupler.
Image display device // US9417455
according to one embodiment, an image display device includes a liquid crystal optical device and an image displayer. the liquid crystal optical device includes a plurality of first electrodes, a plurality of second electrodes, a liquid crystal layer provided between the first and second electrodes, and a first driver. the first driver forms a refractive index distribution in the liquid crystal layer. the image displayer includes a plurality of subpixels. each of subpixels has a first length along a third direction and a second length along a fourth direction. a distance along the third direction between most proximal electrodes of the first electrodes is shorter than a distance along the fourth direction between most proximal electrodes of the second electrodes.
a spectacle lens is disclosed. the disclosed lens provides a vision correcting area for the correction of a wearer's refractive error. the viewing correction area provides correction for non-conventional refractive error to provide at least a part of the wearer's vision correction. the lens has a prescription based on a wave front analysis of the wearer's eye and the lens can further be modified to fit within an eyeglass frame.
Display device // US9411166
provided is a display device. an illustrative display device of the present application may display three-dimensional images or two-dimensional images, which may be enjoyed without glasses.
Electric curtain // US9410370
an aspect of the invention provides an electric curtain. the electric curtain includes a sunlight detector for obtaining light information of sunlight and a light modulation device capable of receiving the sunlight and for adjusting an emergent angle of the sunlight to refract the sunlight to a ceiling of a room.
the invention relates to a display device, in particular a head-mounted display or hocular, having a spatial light modulator and a controllable light-deflecting device for generating a multiple image of the spatial light modulator, which consists of segments, the multiple image being produced at least with a predefinable number of segments which determines the size of a visible area within which a 3d-scene holographically encoded in the spatial light modulator can be reconstructed for observation by an eye of an observer.
an object of the present invention is to provide a liquid-crystal lens having excellent imaging performance. a liquid-crystal lens according to the present invention includes a first liquid-crystal layer , a second liquid-crystal layer , a third liquid-crystal layer , and a fourth liquid-crystal layer which are arranged in this order along an optical axis . the first liquid-crystal layer and the second liquid-crystal layer are 90° different in alignment direction from each other in a plane perpendicular to the optical axis . the first liquid-crystal layer and the fourth liquid-crystal layer are 180° different in alignment direction from each other in the plane perpendicular to the optical axis . the second liquid-crystal layer and the third liquid-crystal layer are 180° different in alignment direction from each other in the plane perpendicular to the optical axis .
To top